Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

СОГЛАСОВАНО		УТВЕРЖДАЮ			
Заведующий кафедрой		Заведующий кафедрой			
Кафедра металлургии цвет металлов (МЦМ_ХМФ)	ных	Кафедра металлургии цветных металлов (МЦМ_ХМФ)			
наименование кафедры		наименование кафедры Малыхин Е.В.			
подпись, инициалы, фамилия		подпись, инициалы, фамилия			
« <u> </u> »	20г.	«»	20г.		
институт, реализующий ОП ВО		институт, реализующий дисциплин	ну		
РАБОЧАЯ П ТЕРМОДИ	РОГРАМ НАМИК	МА ДИСЦИПЛИНЫ А И КИНЕТИКА			
Дисциплина Б1.В.03 Терм	иодинамик	а и кинетика			
 Направление подготовки /		МЕТАЛЛУРГИЯ магистерс	кая		
специальность	программ	иа 22.04.02.02 Металлургия			
Направленность (профиль)	претицу	метяппов			
Форма обучения	очная				
Год набора	2020				

Красноярск 2021

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ

составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования с учетом профессиональных стандартов по укрупненной группе

	•	• • •	- ·	
220000 «ТЕХНОЛОІ	ГИИ МАТЕ	РИАЛОВ»		
II		(1/)
Направление подгото	эвки /специ	альность (про	филь/специализаці	1Я)
Направление 22.04.0	2 МЕТАЛЛ	УРГИЯ магис	терская программа	ı
22.04.02.02 Металлуј	ргия цветнь	их металлов		
Программу				
составили				

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Цель изучения дисциплины — систематизация и углубление знаний в области физической химии, необходимых для грамотного, научно обоснованного подхода к анализу результатов исследований металлургических систем и технологических ситуаций.

1.2 Задачи изучения дисциплины

приобретение общекультурных и профессиональных компетенций, которые помогут использовать знание законов физической химии при описании многокомпонентных систем, использовать термодинамический метод в металлургических технологиях; дадут возможность эффективно применять теорию в профессиональной деятельности.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

ПКО-4:Способен решать задачи, относящиеся к профессиональной				
деятельности,	применяя знания в области моделирования, математики,			
естественных и	и прикладных наук			
Уровень 1	методику проведения термодинамических расчетов и ограничения			
	термодинамического метода			
Уровень 2	особенности кинетики процессов в многокомпонентных			
	металлургических системах			
Уровень 3	роль поверхностных явлений в металлургических системах			
Уровень 1	уровень 1 предсказывать поведение систем на основании термодинамических и			
	кинетических данных			
Уровень 2	использовать математический аппарат в термодинамических			
	расчетах и обработке кинетических данных			
Уровень 3	связывать технологические процессы и объекты металлургического			
	производства сос свойствами металлов, сырья и расходных			
	материалов			
Уровень 1	навыками термодинамических расчетов процессов, протекающих в			
	металлургических системах			
Уровень 2	навыками оценки глубины и скорости протекания процессов			
Уровень 3	способностью оценивать и предсказывать поведение систем в			
	зависимости от внешних параметров (температуры, давления)			

1.4 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина "Термодинамика и кинетика" относится к дисциплинам базовой части учебного плана и изучается в первом семестре.

Предшествующие дисциплины:

- Химия
- Математика

Рассматриваемый в данном курсе материал является теоретической базой для изучения профильных дисциплин и выполнения НИР:

- Теория металлургических процессов
- Материаловедение
- 1.5 Особенности реализации дисциплины Язык реализации дисциплины Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

		Семестр
Вид учебной работы	Всего, зачетных единиц (акад.час)	1
Общая трудоемкость дисциплины	5 (180)	5 (180)
Контактная работа с преподавателем:	1,5 (54)	1,5 (54)
занятия лекционного типа	0,5 (18)	0,5 (18)
занятия семинарского типа		
в том числе: семинары		
практические занятия	1 (36)	1 (36)
практикумы		
лабораторные работы		
другие виды контактной работы		
в том числе: групповые консультации		
индивидуальные консультации		
иная внеаудиторная контактная работа:		
групповые занятия		
индивидуальные занятия		
Самостоятельная работа обучающихся:	2,5 (90)	2,5 (90)
изучение теоретического курса (ТО)		
расчетно-графические задания, задачи (РГЗ)		
реферат, эссе (Р)		
курсовое проектирование (КП)	Нет	Нет
курсовая работа (КР)	Нет	Нет
Промежуточная аттестация (Экзамен)	1 (36)	1 (36)

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционн ого типа (акад.час)		ы и/или рные Практиче работы ские и/или занятия Практику		Формируемые компетенции
1	2	2	4	5	6	7
1	Химическая термодинамика	10	28	0	50	
2	Химическая кинетика	8	8	0	40	
Всего		18	36	0	90	

3.2 Занятия лекционного типа

				Объем в акад.часах	
№ π/π	№ раздела дисциплин ы	Наименование занятий	Всего	в том числе, в инновационной форме	в том числе, в электронной форме
1	1	Химическое равновесие: общая характеристика термодинамического метода, его особенности и ограничения; свойства энергии Гиббса, ее зависимость от температуры и давления; критерии термодинамического равновесия; равновесие в гетерогенных системах	3	0	0

2	1	Термодинамика фазовых равновесий: термодинамика фазовых переходов, фазовые равновесия в двух- и трехкомпонентных системах	2	0	0
3	1	Термодинамическая теория растворов: интегральные и парциальные молярные свойства растворов, фундаментальные уравнения Гиббса, идеальные и неидеальные растворы	2	0	0
4	1	Термодинамика поверхностных явлений: поверхностная энергия, адсорбция, смачивание, растекание одного расплава по поверхности другого	3	0	0
5	2	Кинетика простых и сложных реакций: кинетика простых реакций, влияние температуры на скорость реакции, параллельные, последовательные и обратимые реакции	4	0	0
6	2	Реакции в потоке: предельные режимы проведения реакций в потоке, условие материального баланса, кинетика реакций в реакторах идеального смешения и идеального вытеснения, стационарный режим процесса	2	0	0

7	2	Основные понятия теории гетерогенных процессов: диффузия и скорость диффузии, законы Фика, кинетика процессов в условиях стационарного и нестационарного состояния диффузионного потока, температурная зависимость коэффициента диффузии	2	0	0
Poor			10	0	0

3.3 Занятия семинарского типа

	No	ития семинарского типа		Объем в акад.час	ax
№ п/п	раздела дисципл ины	Наименование занятий	Всего	в том числе, в инновационной форме	в том числе, в электронной форме
1	1	Термодинамические характеристики процессов: входное тестирование, расчет термодинамических параметров процессов, протекающих в металлургических системах (изменение энтальпии, энтропии, энергии Гиббса)	4	0	0
2	1	Влияние давления и температуры на направление реакций: использование уравнения изотермы химической реакции Вант-Гоффа для определения влияния давления и концентрации реагентов на направление протекания химической реакции; анализ влияния температуры на направление протекания реакции с помощью диаграмм Эллингема	4	0	0

3	1	Константа равновесия и расчет равновесного состава реакционных систем: расчет константы химического равновесия по уравнению нормального сродства; расчет выхода продуктов реакции, степени превращения исходных веществ, чистоты получаемых веществ на основе использования закона действующих масс	2	0	0
4	1	Термодинамические характеристики растворов и процессов их образования: Расчет интегральных и парциальных молярных свойств растворов	2	0	0
5	1	Активность и коэффициент активности: Расчет активностей и коэффициентов активностей металлических сплавов по экспериментальным данным	2	0	0
6	1	Термодинамика фазовых переходов: определение теплоты, температуры и давления фазовых превращений в однокомпонентных системах	2	0	0
7	1	Диаграммы состояния двухкомпонентных систем: анализ процессов, протекающих в двухкомпонентных системах при нагревании, охлаждении, изменении состава; определение числа, вида, состава и массы фаз по диаграммам состояния двухкомпонентных систем	6	0	0

8	1	Диаграммы состояния трехкомпонентных систем: работа с проекцией диаграммы состояния в плоскости концентрационного треугольника	4	0	0
9	1	Термодинамика адсорбции: построение изотерм адсорбции, определение площади поверхности адсорбента	2	0	0
10	2	Кинетика простых и сложных реакций: решение задач на расчет констант скоростей простых реакций и констант скоростей отдельных стадий обратимых и параллельных реакций	2	0	0
11	2	Методы расчета энергии активации и предэкспоненциального множителя: графическое и аналитическое определение энергии активации и предэкспоненциального множителя по уравнению Аррениуса и методом трансформации кинетических кривых	2	0	0
12	2	Реакции в реакторах идеального смешения и идеального вытеснения: расчет констант скоростей реакций в потоке	2	0	0
13	2	Кинетика гетерогенных процессов в условиях стационарного режима диффузионного потока: расчет константы скорости диффузии с использованием закона Фика и температурной зависимости константы скорости	2	0	0
Dagre			26	0	0

3.4 Лабораторные занятия

	No	•		Объем в акад.ча	cax
№ п/п	раздела дисципл ины	Наименование занятий	Всего	в том числе, в инновационной форме	в том числе, в электронной форме
Door	,				

5 Фонд оценочных средств для проведения промежуточной аттестации

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

6.1. Основная литература									
	Авторы, составители	Заглавие	Издательство, год						
Л1.1	Напалков В. И., Махов С. В., Бобрышев Б. Л., Моисеев В. С., Напалков В. И.	Физико-химические процессы рафинирования алюминия и его сплавов: учебсправочное пособие	Москва: Теплотехник, 2011						
Л1.2	Морачевский А. Г.	Физическая химия. Поверхностные явления и дисперсные системы: [учебное пособие по направлению "Техническая физика"]	Санкт- Петербург: Лань, 2015						
Л1.3	Морачевский А. Г., Фирсова Е. Г.	Физическая химия. Термодинамика химических реакций: учебное пособие	Санкт- Петербург: Лань, 2015						
		6.2. Дополнительная литература							
	Авторы, составители	Заглавие	Издательство, год						
Л2.1	Жереб В., Васильева М. Н.	Фазовые равновесия и структурообразование: методические указания к практическим занятиям	Красноярск: Информационно- полиграфически й комплекс [ИПК] СФУ, 2009						
Л2.2	Жереб В. П.	Фазовые равновесия и структурообразование: учебметод. пособие для самостоят. работы [для студентов спец. 150701.65 «Физикохимия процессов и материалов»]	Красноярск: СФУ, 2012						

7 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

Э1	Научная библиотека СФУ	http://bik.sfu-kras.ru/	
Э2	Научная электронная библиотека	https://elibrary.ru/	

8 Методические указания для обучающихся по освоению дисциплины (модуля)

Общая трудоемкость самостоятельной работы составляет 90 часов.

Самостоятельное изучение теоретического курса предполагает самостоятельную проработку студентами вопросов теоретического курса и электронных ресурсов по данной тематике, а также решение пройденных практических занятий. Контроль задач темам самостоятельной работы осуществляется время занятий, во проводимых в интерактивной форме.

9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)

9.1 Перечень необходимого программного обеспечения

9.1.1	В	учебном	процессе	ПО	данной	дисциплине	используются	стандартные
программы Microsoft Office.								

9.2 Перечень необходимых информационных справочных систем

9.2.1 Доступ к информационным справочным системам осуществляется через Научную библиотеку СФУ (http://bik.sfu-kras.ru).

10 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Реализация программы предусматривает наличие помещений для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы и помещения для хранения и профилактического обслуживания оборудования. Аудитории должны быть укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления информации.